Role of tetrodotoxin-resistant Na+ current slow inactivation in adaptation of action potential firing in small-diameter dorsal root ganglion neurons.
نویسندگان
چکیده
When acutely dissociated small-diameter dorsal root ganglion (DRG) neurons were stimulated with repeated current injections or prolonged application of capsaicin, their action potential firing quickly adapted. Because TTX-resistant (TTX-R) sodium current in these presumptive nociceptors generates a large fraction of depolarizing current during the action potential, we examined the possible role of inactivation of TTX-R sodium channels in producing adaptation. Under voltage clamp, TTX-R current elicited by short depolarizations showed strong use dependence at frequencies as low as 1 Hz, although recovery from fast inactivation was complete in approximately 10-30 msec. This use-dependent reduction was the result of the entry of TTX-R sodium channels into slow inactivated states. Slow inactivation was more effectively produced by steady depolarization than by cycling channels through open states. Slow inactivation was steeply voltage dependent, with a Boltzmann slope factor of 5 mV, a midpoint near -45 mV (5 sec conditioning pulses), and completeness of approximately 93% positive to -20 mV. The time constant for entry (approximately 200 msec) was independent of voltage from -20 mV to +60 mV, whereas recovery kinetics were moderately voltage dependent (time constant, approximately 1.5 sec at -60 mV and approximately 0.5 sec at -100 mV). Using a prerecorded current-clamp response to capsaicin as a voltage-clamp command waveform, we found that adaptation of firing occurred with a time course similar to that of development of slow inactivation. Thus, slow inactivation of the TTX-R sodium current limits the duration of small DRG cell firing in response to maintained stimuli and may contribute to cross desensitization between chemical and electrical stimuli.
منابع مشابه
Differential slow inactivation and use-dependent inhibition of Nav1.8 channels contribute to distinct firing properties in IB4+ and IB4- DRG neurons.
Nociceptive dorsal root ganglion (DRG) neurons can be classified into nonpeptidergic IB(4)(+) and peptidergic IB(4)(-) subtypes, which terminate in different layers in dorsal horn and transmit pain along different ascending pathways, and display different firing properties. Voltage-gated, tetrodotoxin-resistant (TTX-R) Na(v)1.8 channels are expressed in both IB(4)(+) and IB(4)(-) cells and prod...
متن کاملCharacteristics of late Na(+) current in adult rat small sensory neurons.
Na(+) currents were recorded using patch-clamp techniques from small-diameter (<25 micrometers) dorsal root ganglion neurons, cultured from adult rats (>150 g). Late Na(+) currents maintained throughout long-duration voltage-clamp steps (>/=200 ms) were of two types: a low-threshold, tetrodotoxin-sensitive (TTX-s) current that was largely blocked by 200 nM TTX, and a high-threshold, TTX-resista...
متن کاملPKCε-dependent potentiation of TTX-resistant Nav1.8 current by neurokinin-1 receptor activation in rat dorsal root ganglion neurons
BACKGROUND Substance P (SP), which mainly exists in a subtype of small-diameter dorsal root ganglion (DRG) neurons, is an important signal molecule in pain processing in the spinal cord. Our previous results have proved the expression of SP receptor neurokinin-1 (NK-1) on DRG neurons and its interaction with transient receptor potential vanilloid 1 (TRPV1) receptor. RESULTS In this study we i...
متن کاملalpha-SNS produces the slow TTX-resistant sodium current in large cutaneous afferent DRG neurons.
In this study, we used sensory neuron specific (SNS) sodium channel gene knockout (-/-) mice to ask whether SNS sodium channel produces the slow Na(+) current ("slow") in large (>40 microm diam) cutaneous afferent dorsal root ganglion (DRG) neurons. SNS wild-type (+/+) mice were used as controls. Retrograde Fluoro-Gold labeling permitted the definitive identification of cutaneous afferent neuro...
متن کاملDiffering alterations of sodium currents in small dorsal root ganglion neurons after ganglion compression and peripheral nerve injury
Voltage-gated sodium channels play important roles in modulating dorsal root ganglion (DRG) neuron hyperexcitability and hyperalgesia after peripheral nerve injury or inflammation. We report that chronic compression of DRG (CCD) produces profound effect on tetrodotoxin-resistant (TTX-R) and tetrodotoxin-sensitive (TTX-S) sodium currents, which are different from that by chronic constriction inj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 32 شماره
صفحات -
تاریخ انتشار 2003